刘江岩
日期:2025年01月09日
*个人简介:
刘江岩,男,湖南湘潭人,副教授。斯坦福大学“全球前2%顶尖科学家”。2018年获华中科技大学工学博士学位(制冷及低温工程),2018~2024在重庆大学能源与动力工程学院工作,2024年11月加入重庆交通大学机电与车辆工程学院。已发表SCI论文三十余篇,第一/通讯作者发表中科院1区文章10篇(影响因子>10论文3篇),中科院2区论文7篇,谷歌引用2800余次,H指数33。出版专著1部。担任《汽车工程学报》青年编委,教育部学位与研究生发展教育中心评审专家、教育部本科生毕业论文评审专家,Applied Energy、Energy、Sustainable cities and society、《湖南大学学报》《汽车工程学报》等期刊论文评审专家。
*研究方向:
1)新能源汽车智能控制、诊断、热安全
建立了硬件在环实验平台,主要研究热管理系统变工况热力学特性,故障传播演化机理。利用模糊控制、模型预测控制、强化学习等算法,实现整车热管理协同控制、容错控制、跨系统/跨温区自适应控制、面向实车应用的模型简化等。
2)制冷、热泵、热管理系统故障检测与诊断
利用统计学、机器学习、深度学习等的故障检测与诊断方法,解决故障诊断在复杂运行模式、极端工况、跨系统应用、可解释性中的关键问题。
研究特色:多重并发故障诊断、故障传播机理。
3)能源系统大数据分析
研究融合机器学习、无监督分析、统计学等的数据挖掘理论,结合专业知识,实现能源系统运行模式识别、能耗预测及评价、异常及风险预警、节能分析等。
4)动力电池数据挖掘及状态估计
结合数据挖掘和专业知识探究动力电池老化规律;研究数据特性对电池状态估计模型泛化性能的影响,提出状态估计模型规模化应用的性能提升理论。
欢迎对车辆工程、能源动力、人工智能交叉研究感兴趣的本科生与我联系交流。
*科研项目:
1)国家自然科学青年基金“电动汽车液冷热管理热力故障传播动态演化机理及关联特征提取研究”,主持,2025.01~2027.12
2)重庆市自然科学基金面上项目“兼顾热、电网损失的西部山地分布式能源系统空间结构与邻里尺度耦合优化研究”,主持,2019.07~2022.06
3)重庆美的通用,“冷水机组制冷剂泄漏在线检测技术”,主持,2018~2019
4)JG课题“热电氧一体化联供装备储能技术研究”,主持,2022~2023
5)中冶赛迪,“智能工厂软件设计”,主持,2024~2025
6)四川中烟,“基于大数据分析及分区多场耦合的空调节能控制技术研究”,主研,2020~2021
7)长安汽车“基于强化学习的整车热管理控制”,主研,2022~2023
8)国家重点研发计划“高性能纯电动运动型多功能汽车(SUV)开发”,参与
*发表论文:
① 论文发表(第一/通讯作者):
[1]Jiangyan Liu, Xin Li, et al. An efficient sensor and thermal coupling fault diagnosis methodology for building energy systems. Energy and Buildings. 296. 2023, 113367. (中科院二区,IF=6.6)
[2]Guannan Li, Liang Chen,Jiangyan Liu*, et al. Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis [J]. Energy. 2023, 125943. (中科院一区,IF=9.0)
[3]Guannan Li, Fan Li, Tanveer Ahmad,Jiangyan Liu*, et al. Performance evaluation of short-term cross-building energy predictions using deep transfer learning strategies[J]. Energy and Buildings. 2022, 250: 112461. (中科院二区,IF=6.6)
[4]Guannan Li, Fan Li, Tanveer Ahmad,Jiangyan Liu*, et al. Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions[J]. Energy. 2022, 259: 124915. (中科院一区,IF=9.0)
[5]Jiangyan Liu, Xin Li, Guannan Li, et al. A statistical-based online cross-system fault detection method for building chillers[J]. Building Simulation. 2022, 15(8): 1527-1543. (中科院一区,IF=6.1)
[6]Jiangyan Liu, Qing Zhang, Xin Li, et al. Transfer learning-based strategies for fault diagnosis in building energy systems[J]. Energy and Buildings. 2021, 250: 111256. (中科院二区,IF=6.6)
[7]Guannan Li, Yue Zheng,Jiangyan Liu*, et al. An improved stacking ensemble learning-based sensor fault detection method for building energy systems using fault-discrimination information[J]. Journal of Building Engineering. 2021, 43: 102812. (中科院二区,IF=6.7)
[8]Zhenxiang Dong,Jiangyan Liu*, and Bin Liu et al. 2021. Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption patterns classification[J]. Energy and Buildings. 2021: 110929. (中科院二区,IF=6.6)
[9]Jiangyan Liu*, Qing Zhang, and Zhenxiang Dong et al. 2021. Quantitative evaluation of the building energy performance based on short-term energy predictions[J]. Energy. 2021;223: 120065. (中科院一区,IF=9.0)
[10]Jiangyan Liu*, Daliang Shi, Guannan Li, et al. Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers[J]. Energy and Buildings. 2020;216:109957. (中科院二区,IF=6.6)
[11]Jiangyan Liu*,Kuining Li, Bin Liu, et al. Improvement of the energy evaluation methodology of individual office building with dynamic energy grading system[J]. Sustainable Cities and Society. 2020;58:102133. (中科院一区,IF=11.7)
[12]Jiangyan Liu, Guannan Li, Bin Liu, et al. Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A case study of the building variable refrigerant flow system[J]. Energy. 2019;174:873-885. (中科院一区,IF=9.0)
[13]Jiangyan Liu, Jiahui Liu, Huanxin Chen, et al. Energy diagnosis of variable refrigerant flow (VRF) systems: Data mining technique and statistical quality control approach[J]. Energy and Buildings, 2018, 175: 148-162. (中科院二区,IF=6.6)
[14]Jiangyan Liu, Huanxin Chen, Jiahui Liu, et al. An energy performance evaluation methodology for individual office building with dynamic energy benchmarks using limited information[J]. Applied Energy, 2017, 206: 193-205.(中科院一区,IF=11.2)
[15]Jiangyan Liu, Jiangyu Wang, Guannan Liet al. Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques[J]. Applied Energy, 2017, 208: 522-539.(中科院一区,IF=11.2)
[16]Jiangyan Liu, Guannan Li, Huanxin Chen, et al. A robust online refrigerant charge fault diagnosis strategy for VRF systems based on virtual sensor technique and PCA-EWMA method[J]. Applied Thermal Engineering, 2017, 119: 233-243.(中科院一区,IF=6.1)
[17]Jiangyan Liu, Yunpeng Hu, Huanxin Chen, et al. A refrigerant charge fault detection method for variable refrigerant flow (VRF) air-conditioning systems[J]. Applied Thermal Engineering, 2016, 107: 284-293.(中科院一区,IF=6.1)
[18]于秋月,刘江岩*,何林, et al.基于机器学习的锂离子电池荷电状态多步预测.汽车工程学报. 13 (2023), 586-596. (CSTPCD)
[19]石大亮,刘江岩*,李夔宁等.基于关联规则分类的冷水机组故障诊断研究[J].制冷学报,2021(01)(CSCD核心)
[20]刘中明,刘江岩*,姜志远, et al.基于全年负荷的复合能源系统双层协同整体优化方法.分布式能源. 8 (2023), 26-36.
[21]刘江岩,陈焕新,王江宇等.基于数据挖掘算法的地铁站内温度时序预测方法[J].工程热物理学报,2018,38(06): 1316-1321. (EI)
[22]陈焕新,刘江岩,胡云鹏等.大数据在空调领域的应用[J].制冷学报. 2015(04): 16-22.(中国知网高被引论文、高下载论文、高PCSI论文、“第三届中国科协优秀科技论文”)
②专著:
[1]陈焕新,刘江岩 等.制冷空调遇上大数据——行业大变革[M].北京:中国建筑工业出版社,2017
*联系方式:
liujiangyan@cqjtu.edu.cn